Connect with us

Tech

From health care to infrastructure, how AI is changing the world for the better

Published

on

From health care to infrastructure, how AI is changing the world for the better


Over the past several years, our world has been confronted with a range of unprecedented and, at times, deadly challenges—from the covid-19 pandemic to severe weather conditions, and a concurrent rise of societal issues including aging population, urban congestion, and unequal access to health care.

But as the development of artificial intelligence (AI) and its applications grow, AI technologies are playing an instrumental role in addressing socio-economic and environmental challenges faced by the modern world, ultimately helping us to reach a better standard of living.

Filling gaps, providing quality care

One of the most promising applications of AI in recent years has been in augmenting human workers in key sectors that are chronically understaffed, contributing to major advances in solving challenging social issues.

In China, for instance, the medical system has long grappled with a shortage of health-care professionals, with an average of just 17.9 doctors for 10,000 people. The situation is even more imbalanced in small towns and rural areas, forcing many patients to travel long distances to cities to access quality medical care and specialist treatments.

Baidu’s Clinical Decision Support System (CDSS) was developed to address this urgent need. Built on a foundation of medical natural language processing and knowledge graph technology, the system provides real-time assistance to doctors, informing their judgments, helping them more accurately recognize symptoms, and providing corresponding treatment options. By bringing the expertise and resources of top-tier medical institutions to local clinics, the system offers patients a quality of treatment that would otherwise be out of reach. To date, Baidu’s CDSS has been applied in thousands of primary care facilities, and the number is rapidly growing.

“In the diagnosis stage, sometimes young doctors may miss or ignore some symptoms due to a lack of experience,” says one doctor from a hospital in Beijing that has been using CDSS for two years. “Through the consultation support and real-time alert functions of CDSS, which provide more suggestions and references to physicians, we were able to significantly improve the quality of our medical department.”

Accessible solutions through humanized technology

By 2022, approximately 14% of China’s population will be aged 65 and over, according to forecasts by the China Development Foundation, with the number expected to grow to more than 30% by 2050.

For older populations, AI-powered smart speakers and displays can serve as a vital lifeline. Baidu has developed a popular smart display unit with computer vision capabilities and voice interaction technology, called Xiaodu, which can provide a wide range of essential services, including offering health tips, arranging shopping and transportation assistance, providing access to emergency care, and even daily conversation and emotional support.

The success of Xiaodu made it one of the stars of the recent Baidu World, the company’s annual flagship technology conference, which explored how local welfare associations are increasingly distributing Xiaodu installations to seniors.

Xiaodu’s popularity among the elderly highlights another key potential of AI: breaking down barriers and inequalities in access to technology in today’s world. While previous generations saw older populations disenfranchised by the advent of new technologies, AI offers the possibility of applications that will be accessible to all. 

Transforming infrastructure, revolutionizing society

Beyond solving targeted problems, new developments show how AI has even greater potential to reduce errors and improve efficiency in the systems that permeate our daily lives, including urban infrastructure in a growing number of cities.

In China’s Shandong province, Baidu AI Cloud supports safety inspections of the electric power grid, providing instant alerts to avert power outages that could affect millions. In Quanzhou, Baidu AI Cloud is being used to accurately forecast water consumption needs at the city’s main water treatment plant for its population of 8 million people. The system analyzes a range of factors, from weather patterns to holidays, helping to boost the plant’s efficiency and cutting its electricity usage by 8%.

“We always need to make sure the system is functioning and the water quality is stable, but it would be impossible for a worker to stay awake and alert for 24 hours a day, never sleeping,” says Shen Peikun, a worker at the Quanzhou plant. “But now this system can handle the equipment and alert us if there are any sudden changes.”

Baidu’s AI technology has revolutionized one of the most ordinary but vital features of city life: the traffic light. Smart traffic systems can monitor vehicle and pedestrian flows, analyzing a vast array of data to predict future traffic conditions and optimize the traffic flow. In the northern Chinese city of Baoding, the use of Baidu’s smart traffic lights has reduced waiting times by up to 20% during peak rush hours, giving people back more time in their daily lives.

With the rapid development of autonomous driving, including Baidu’s Apollo Moon robotaxis unveiled earlier this year, a more comprehensive smart traffic infrastructure is taking shape, with each component building upon the other to enable safer and more efficient travel for all.

In its research on smart traffic solutions, for example, Baidu has found that even a 15% improvement in traffic efficiency correlates to a 2.4% growth in GDP for a given area, as time and resources formerly ensnared in daily inconvenience are freed up to drive economic productivity. In economies grasping for new levers of growth and competitive advantage, optimization like this can provide an invaluable solution. Greater efficiency can also lead to a better use of the earth’s resources, and a reduction in carbon emissions.

As AI applications multiply—including in smart cities and autonomous driving—and become more integrated with one another, their potential to unlock positive value and to help find solutions to some of the world’s most pressing social concerns will continue to grow.

This content was produced by Baidu. It was not written by MIT Technology Review’s editorial staff.

Tech

Companies hoping to grow carbon-sucking kelp may be rushing ahead of the science

Published

on

kelp forest off California coast


In late January, Elon Musk tweeted that he planned to give $100 million to promising carbon removal technologies, stirring the hopes of researchers and entrepreneurs.

A few weeks later, Arin Crumley, a filmmaker who went on to develop electric skateboards, announced that a team was forming on Clubhouse, the audio app popular in Silicon Valley, to compete for a share of the Musk-funded XPrize.

A group of artists, designers, and engineers assembled there and discussed a variety of possible natural and technical means of sucking carbon dioxide out of the atmosphere. As the conversations continued and a core team coalesced, they formed a company, Pull To Refresh, and eventually settled on growing giant bladder kelp in the ocean.

So far, the venture’s main efforts include growing the seaweed in a tank and testing their control systems on a small fishing boat on a Northern California lake. But it’s already encouraging companies to “get in touch” if they’re interested in purchasing tons of sequestered CO2, as a way to balance out their greenhouse-gas emissions.

Crumley says that huge fleets of semi-autonomous vessels growing kelp could suck up around a trillion tons of carbon dioxide and store it away in the depths of the sea, effectively reversing climate change. “With a small amount of open ocean,” he says, “we can get back to preindustrial levels” of atmospheric carbon dioxide.

‘No one knows’

Numerous studies show the world may need to remove billions of tons of carbon dioxide a year from the atmosphere by midcentury to prevent dangerous levels of warming or bring the planet back from them. In addition, more and more corporations are scouring the market for carbon credits that allow them to offset their emissions and claim progress toward the goal of carbon neutrality.

All of that has spurred a growing number of companies, investors, and research groups to explore carbon removal approaches that range from planting trees to grinding up minerals to building giant C02-sucking factories.

Kelp has become an especially active area of inquiry and investment because there’s already an industry that cultivates it on a large scale—and the theoretical carbon removal potential is significant. An expert panel assembled by the Energy Futures Initiative estimated that kelp has the capacity to pull down about 1 billion to 10 billion tons of carbon dioxide per year.

But scientists are still grappling with fundamental questions about this approach. How much kelp can we grow? What will it take to ensure that most of the seaweed sinks to the bottom of the ocean? And how much of the carbon will stay there long enough to really help the climate?

In addition, no one knows what the ecological impact of depositing billions of tons of dead biomass on sea floor would be.

“We just have zero experience with perturbing the bottom of the ocean with that amount of carbon,” says Steven Davis, an associate professor at the University of California, Irvine, who is analyzing the economics of various uses of kelp. “I don’t think anybody has a great idea what it will mean to actively intervene in the system at that scale.”

The scientific unknowns, however, haven’t prevented some ventures from rushing ahead, making bold promises and aiming to sell carbon credits. If the practice doesn’t sequester as much carbon as claimed it could slow or overstate progress on climate change, as the companies buying those credits carry on emitting on the false promise that the oceans are balancing out that pollution, ton for ton.

“For the field as a whole, I think, having this research done by universities in partnership with government scientists and national labs would go a long way toward establishing a basic level of trust before we’re commercializing some of this stuff,” says Holly Buck, an assistant professor at the University at Buffalo, who is studying the social implications of ocean-based carbon removal.

The lure of the ocean

Swaying columns of giant kelp line the rocky shores of California’s Monterey Bay, providing habitat and hunting grounds for rockfish, sea otters, and urchins. The brown macroalgae draws on sunlight, carbon dioxide, and nutrients in the cool coastal waters to grow up to two feet a day. The forests continually shed their blades and fronds, and the seaweed can be knocked loose entirely by waves and storms.

In the late 1980s, researchers at the Monterey Bay Aquarium began a series of experiments to determine where all that seaweed ends up. They attached radio transmitters to large floating rafts of kelp and scanned the ocean depths with remote-operated submarines.

An underwater kelp forest off the coast of California.

GETTY

The scientists estimated that the forests released more than 130,000 tons of kelp each year. Most of the rafts of kelp washed up on shore within the bay in a matter of days. But in the underwater observations, they found bundles of seaweed lining the walls and floor of an adjacent underwater gully known as the Carmel Submarine Canyon, hundreds of meters below the surface.

Scientists have spotted similar remnants of kelp on the deep ocean floors in coastal pockets throughout the world. And it’s clear that some of that carbon in the biomass stays down for millennia, because kelp is a known source of oil deposits.

A 2016 paper published in Nature Geoscience estimated that seaweed may naturally sequester nearly 175 million tons of carbon around the world each year as it sinks into the deep sea or drifts into submarine canyons.

That translates to well below the levels of carbon dioxide that the world will likely need to remove annually by midcentury—let alone the amounts envisioned by Crumley and his team. Which is why Pull To Refresh and other companies are exploring ways to radically scale up the growth of kelp, on offshore vessels or elsewhere.

Reaching the deep seas

But how much of the carbon will remain trapped below the surface and for how long?

Certain species of seaweed, like giant bladder kelp, have tiny gas bladders on their blades, enabling the macroalgae to collect more of the sunlight necessary to drive photosynthesis. The bladders can also keep the remnants or rafts afloat for days or longer depending on the species, helping currents carry dislodged kelp to distant shores.

When the carbon in kelp decomposes on land, or turns into dissolved inorganic carbon dioxide in shallow seawater, it can return to the atmosphere, says David Koweek, science director at Ocean Visions, a research organization that partners with institutions like MIT, Stanford, and the Monterey Bay Aquarium Research Institute. The carbon may also be released if marine creatures digest the kelp in the upper oceans.

But some kelp sinks into the deep ocean as well. Bladders degrade. Storms push the seaweed down so deep that they deflate. Certain species are naturally nonbuoyant. And some amount that breaks free below the surface stays there and may drift down into deeper waters through underwater canyons, like the one off the coast of Monterey.

Ocean circulation models suggest much of the carbon in biomass that reaches great depths of the oceans could remain there for very long times, because the overturning patterns that bring deep waters toward the surface operate so slowly. Below 2,100 meters, for instance, the median sequestration time would exceed 750 years across major parts of the North Pacific, according to a recent paper in Environmental Research Letters.

All of which suggests that deliberately sinking seaweed could store away carbon long enough to ease some of the pressures of climate change. But it will matter a lot where it’s done, and what efforts are taken to ensure that most of the biomatter reaches the deep ocean.

For-profit plans

Pull To Refresh’s plan is to develop semi-autonomous vessels equipped with floats, solar panels, cameras, and satellite antennas, enabling the crafts to adjust their steering and speed to arrive at designated points in the open ocean.

Each of these so-called Canaries will also tow a sort of underwater trellis made of steel wire, known as the Tadpole, tethering together vases in which giant bladder kelp can grow. The vessel will feed the seaweed through tubes from an onboard tank of micronutrients.

drone and boat at sunset
Pull To Refresh has tested its control systems on a fishing boat on a lake in Northern California.

COURTESY: PULL TO REFRESH

Eventually, Crumley says, the kelp will die, fall off, and naturally make its way down to the bottom of the ocean. By putting the vessels far from the coast, the company believes, it can address the risk that the dead seaweed will wash up on shore.

Pull To Refresh has already begun discussions with companies about purchasing “kelp tonnes” from the seaweed it’ll eventually grow.

“We need a business model that works now-ish or as soon as possible,” Crumley says. “The ones we’re talking to are forgiving; they understand that it’s in its infancy. So we will be up-front about anything we don’t know about. But we’ll keep deploying these Canaries until we’ve got enough tonnes to close out your order.”

Crumley said in an email that the company will have two years to get the carbon accounting for its process approved by a third-party accreditor, as part of any transition. He said the company is conducting internal environmental impact efforts, talking to at least one carbon removal registry and that it hopes to receive input from outside researchers working on these issues.

“We are never going to sell a tonne that isn’t third-party verified simply because we don’t want to be a part of anything that could even just sound shady,” he wrote.

‘Scale beyond any other’

Other ventures are taking added steps to ensure that the kelp sinks, and to coordinate with scientific experts in the field.

Running Tide, an aquaculture company based in Portland, Maine, is carrying out field tests in the North Atlantic to determine where and how various types of kelp grow best under a variety of conditions. The company is primarily focused on nonbuoyant species of macroalgae and has also been developing biodegradable floats.

The company isn’t testing sinking yet, but the basic concept is that the floats will break down as the seaweed grows in the ocean. After about six to nine months, the whole thing should readily sink to the bottom of the ocean and stay there.

Marty Odlin, chief executive of Running Tide, stresses that the company is working with scientists to ensure they’re evaluating the carbon removal potential of kelp in rigorous and appropriate ways.

Ocean Visions helped establish a scientific advisory team to guide the company’s field trials, made up of researchers from the Monterey Bay Aquarium Research Institute, UC Santa Barbara, and other institutions. The company is also coordinating with the Centre for Climate Repair at Cambridge on efforts to more precisely determine how much carbon the oceans can take up through these sorts of approaches.

Running Tide plans to carry out tests for at least two and a half years to develop a “robust data set” on the effects of these practices.

“At that point, the conclusion might be we need more data or this doesn’t work or it’s ready to go,” Odlin says.

The company has high hopes for what it might achieve, stating on its website: “Growing kelp and sinking it in the deep ocean is a carbon sequestration solution that can scale beyond any other.”

Running Tide has raised millions of dollars from Venrock, Lowercarbon Capital, and other investors. The tech companies Shopify and Stripe have both provided funds as well, purchasing future carbon dioxide removal at high prices ($250 a ton in Stripe’s case) to help fund research and development efforts.

Several other companies and nonprofits are also exploring ways to sequester carbon dioxide from seaweed. That includes the Climate Foundation, which is selling a $125, blockchain-secured “kelp coin” to support its broader research efforts to increase kelp production for food and other purposes.

The risks

Some carbon removal experts fear that market forces could propel kelp-sinking efforts forward, whatever the research finds about its effectiveness or risks. The companies or nonprofits doing it will have financial incentives to sell credits. Investors will want to earn their money back. Corporate demand for sources of carbon credits is skyrocketing. And offset registries, which earn money by providing a stamp of approval for carbon credit programs, have a clear stake in adding a new category to the carbon marketplace.

One voluntary offset registry, Verra, is already developing a protocol for carbon removal through seagrass cultivation and is “actively watching” the kelp space, according to Yale Environment 360.

We’ve already seen these pressures play out with other approaches to offset credits, says Danny Cullenward, policy director at CarbonPlan, a nonprofit that assesses the scientific integrity of carbon removal efforts.

CarbonPlan and other research groups have highlighted excessive crediting and other problems with programs designed to incentivize, measure, and verify emissions avoided or carbon removal achieved through forest and soil management practices. Yet the carbon credit markets continue to grow as nations and corporations look for ways to offset their ongoing emissions, on paper if not in the atmosphere.

Sinking seaweed to the bottom of the ocean creates especially tricky challenges in verifying that the carbon removal is really happening. After all, it’s far easier to measure trees than it will be to track the flow of carbon dissolved in the deep ocean. That means any carbon accounting system for kelp will rely heavily on models that determine how much carbon should stay under the surface for how long in certain parts of the ocean, under certain circumstances. Getting the assumptions right will be critical to the integrity of any eventual offset program—and any corporate carbon math that relies on them.

Some researchers also worry about the ecological impact of seaweed sinking.

Wil Burns, a visiting professor focused on carbon removal at Northwestern University and a member of Running Tide’s advisory board, notes that growing enough kelp to achieve a billion tons of carbon removal could require millions of buoys in the oceans.

Those floating forests could block the migration paths of marine mammals. Creatures could also hitch aboard the buoys or the vessels delivering them, potentially introducing invasive species into different areas. And the kelp forests themselves could create “gigantic new sushi bars,” Burns says, perhaps tipping food chains in ways that are hard to predict.

The addition of that much biomatter and carbon into the deep ocean could alter the biochemistry of the waters, too, and that could have cascading effects on marine life.

“If you’re talking about an approach that could massively alter ocean ecosystems, do you want that in the hands of the private sector?” Burns says.

Running Tide’s Odlin stresses that he has no interest in working on carbon removal methods that don’t work or that harm the oceans. He says the reason he started looking into kelp sinking was that he witnessed firsthand how climate change was affecting marine ecosystems and fish populations.

“I’m trying to fix that problem,” he says. “If this activity doesn’t fix that problem, I’ll go work on something else that will.”

Scaling up

Scaling up kelp-based carbon removal from the hundreds of millions of tons estimated to occur naturally to the billions of tons needed will also face some obvious logistical challenges, says John Beardall, an emeritus professor at Monash University in Australia, who has studied the potential and challenges of seaweed cultivation.

For one, only certain parts of the world offer suitable habitat for most kelp. Seaweed largely grows in relatively shallow, cool, nutrient-rich waters along rocky coastlines.

Expanding kelp cultivation near shore will be constrained by existing uses like shipping, fishing, marine protected areas, and indigenous territories, Ocean Visions notes in a “state of technology” assessment. Moving it offshore, with rafts or buoys, will create engineering challenges and add costs.

Moreover, companies may have to overcome legal complications if their primary purpose will be sinking kelp on large, commercial scales. There are complex and evolving sets of rules under treaties like the London Convention and the London Protocol that prevent dumping in the open oceans and regulate “marine geoengineering activities” designed to counteract climate change. 

Commercial efforts to move ahead with sinking seaweed in certain areas could be subject to permitting requirements under a resolution of the London Convention, or run afoul of at least the spirit of the rule if they move ahead without environmental assessments, Burns says.

Climate change itself is already devastating kelp forests in certain parts of the world as well, Beardall noted in an email. Warming waters coupled with a population explosion of sea urchins that feed on seaweed have decimated the kelp forests along California’s coastline. The giant kelp forests along Tasmania have also shrunk by about 95% in recent years.

“This is not to say that we shouldn’t look to seaweed harvest and aquaculture as one approach to CO2 sequestration,” Beardall wrote. “But I simply want to make the point that is not going to be a major route.”

Other, better uses

Another question is simply whether sinking seaweed is the best use of it.

It’s a critical food and income source for farmers across significant parts of Asia, and one that’s already under growing strains as climate change accelerates. It’s used in pharmaceuticals, food additives, and animal feed. And it could be employed in other applications that tie up the carbon, like bioplastics or biochar that enriches soils.

“Sustainably farmed seaweed is a valuable product with a very wide range of uses … and a low environmental footprint,” said Dorte Krause-Jensen, a professor at Aarhus University in Denmark who has studied kelp carbon sequestration, in an email. “In my opinion it would be a terrible waste to dump the biomass into the deep sea.”

UC Irvine’s Davis has been conducting a comparative economic analysis of various ways of putting kelp to use, including sinking it, converting it to potentially carbon-neutral biofuels, or using it as animal feed. The preliminary results show that even if every cost was at the lowest end of the ranges, seaweed sinking could run around $200 a ton, which is more than double the long-term, low-end cost estimates for carbon-sucking factories.

Davis says those costs would likely drive kelp cultivators toward uses with higher economic value. “I’m more and more convinced that the biggest climate benefits of farmed kelp won’t involve sinking it,” he says. 

‘Get it done’

Pull To Refresh’s Crumley says he and his team hope to begin testing a vessel in the ocean this year. If it works well, they plan to attach baby kelp to the Tadpole and “send it on its voyage,” he says.

He disputed the argument that companies should hold off on selling tons now on the promise of eventual carbon removal. He says that businesses need the resources to develop and scale up these technologies, and that government grants won’t get the field where it needs to be.

“We’ve just decided to get it done,” he says. “If, in the end, we’re wrong, we’ll take responsibility for any mistakes. But we think this is the right move.”

It’s not clear, however, how such a startup could take responsibility for mistakes if the activities harm marine ecosystems. And at least for now, there are no clear mechanisms that would hold companies accountable for overestimating carbon removal through kelp.



Continue Reading

Tech

Activists are helping Texans get access to abortion pills online

Published

on

Activists are helping Texans get access to abortion pills online


The process only requires an internet connection: patients go online and answer some HIPAA-compliant questions about their pregnancy, such as when the first day of their last period was. If it’s a straightforward case, it’s approved by the doctor—there are seven American doctors covering 15 states—and the medication arrives in a few days. In places like Texas, where Aid Access doesn’t have doctors in state, Aid Access founder Rebecca Gomperts prescribes the medication from Europe, where she is based. That can take around three weeks, Pitney says. 

The ability to get a safe, discreet abortion at home with just an internet connection could be life-changing for Texans and others in need. “It’s really changed the face of abortion access,” says Elisa Wells, the cofounder of Plan C, which provides information and education about how to access the pills.

In Texas, the need is especially acute because cultural stigma and an existing history of restrictive laws means there are very few in-person clinics available. Before the recent law change, Texans were three times more likely than the national average to use abortion pills, because abortion clinics were so far away. 

“In a situation like Texas, where mainstream avenues of access have been almost entirely cut off, it is a solution,” says Wells, who describes much of Texas as an “abortion desert.” Black and Hispanic people often have less access to medical care, and so the ability to access abortion pills online is vital for these communities.

They’re also much cheaper than medical abortions, with most pills costing $105 to $150 plus a required online consultation, depending on which state you live in. (Aid Access forgives some or all of the payment if necessary.) 

But while they’re commonly prescribed in other countries (they’re used in around 90% of abortions in France and Scotland, for example), only 40% of American abortions use pills. In fact, using the pills in the US to “self-manage an abortion” can lead to charges in at least 20 states, including Texas, and has been the basis for the arrest of 21 people since 2000. Aid Access’s use of Gomperts to write prescriptions as a foreign doctor has come under federal investigation by the FDA, which the group challenged. The situation remains unresolved. 

Continue Reading

Tech

Troll farms reached 140 million Americans a month on Facebook before 2020 election, internal report shows

Published

on

Troll farms reached 140 million Americans a month on Facebook before 2020 election, internal report shows


Joe Osborne, a Facebook spokesperson, said in a statement that the company “had already been investigating these topics” at the time of Allen’s report, adding: “Since that time, we have stood up teams, developed new policies, and collaborated with industry peers to address these networks. We’ve taken aggressive enforcement actions against these kinds of foreign and domestic inauthentic groups and have shared the results publicly on a quarterly basis.”

In the process of fact-checking this story shortly before publication, MIT Technology Review found that five of the troll-farm pages mentioned in the report remained active.

This is the largest troll-farm page targeting African-Americans in October 2019. It still remains active on Facebook.

The report found that troll farms were reaching the same demographic groups singled out by the Kremlin-backed Internet Research Agency (IRA) during the 2016 election, which had targeted Christians, Black Americans, and Native Americans. A 2018 BuzzFeed News investigation found that at least one member of the Russian IRA, indicted for alleged interference in the 2016 US election, had also visited Macedonia around the emergence of its first troll farms, though it didn’t find concrete evidence of a connection. (Facebook said its investigations hadn’t turned up a connection between the IRA and Macedonian troll farms either.)

“This is not normal. This is not healthy,” Allen wrote. “We have empowered inauthentic actors to accumulate huge followings for largely unknown purposes … The fact that actors with possible ties to the IRA have access to huge audience numbers in the same demographic groups targeted by the IRA poses an enormous risk to the US 2020 election.”

As long as troll farms found success in using these tactics, any other bad actor could too, he continued: “If the Troll Farms are reaching 30M US users with content targeted to African Americans, we should not at all be surprised if we discover the IRA also currently has large audiences there.”

Allen wrote the report as the fourth and final installment of a year-and-a-half-long effort to understand troll farms. He left the company that same month, in part because of frustration that leadership had “effectively ignored” his research, according to the former Facebook employee who supplied the report. Allen declined to comment.

The report reveals the alarming state of affairs in which Facebook leadership left the platform for years, despite repeated public promises to aggressively tackle foreign-based election interference. MIT Technology Review is making the full report available, with employee names redacted, because it is in the public interest.

Its revelations include:

  • As of October 2019, around 15,000 Facebook pages with a majority US audience were being run out of Kosovo and Macedonia, known bad actors during the 2016 election.
  • Collectively, those troll-farm pages—which the report treats as a single page for comparison purposes—reached 140 million US users monthly and 360 million global users weekly. Walmart’s page reached the second-largest US audience at 100 million.
  • The troll farm pages also combined to form:
    • the largest Christian American page on Facebook, 20 times larger than the next largest—reaching 75 million US users monthly, 95% of whom had never followed any of the pages.
    • the largest African-American page on Facebook, three times larger than the next largest—reaching 30 million US users monthly, 85% of whom had never followed any of the pages.
    • the second-largest Native American page on Facebook, reaching 400,000 users monthly, 90% of whom had never followed any of the pages.
    • the fifth-largest women’s page on Facebook, reaching 60 million US users monthly, 90% of whom had never followed any of the pages.
  • Troll farms primarily affect the US but also target the UK, Australia, India, and Central and South American countries.
  • Facebook has conducted multiple studies confirming that content more likely to receive user engagement (likes, comments, and shares) is more likely of a type known to be bad. Still, the company has continued to rank content in user’s newsfeeds according to what will receive the highest engagement.
  • Facebook forbids pages from posting content merely copied and pasted from other parts of the platform but does not enforce the policy against known bad actors. This makes it easy for foreign actors who do not speak the local language to post entirely copied content and still reach a massive audience. At one point, as many as 40% of page views on US pages went to those featuring primarily unoriginal content or material of limited originality.
  • Troll farms previously made their way into Facebook’s Instant Articles and Ad Breaks partnership programs, which are designed to help news organizations and other publishers monetize their articles and videos. At one point, thanks to a lack of basic quality checks, as many as 60% of Instant Article reads were going to content that had been plagiarized from elsewhere. This made it easy for troll farms to mix in unnoticed, and even receive payments from Facebook.

How Facebook enables troll farms and grows their audiences

The report looks specifically at troll farms based in Kosovo and Macedonia, which are run by people who don’t necessarily understand American politics. Yet because of the way Facebook’s newsfeed reward systems are designed, they can still have a significant impact on political discourse.

Continue Reading

Copyright © 2020 Diliput News.