Connect with us

Tech

Collective data rights can stop big tech from obliterating privacy

Published

on

Collective data rights can stop big tech from obliterating privacy


Individuals should not have to fight for their data privacy rights and be responsible for every consequence of their digital actions. Consider an analogy: people have a right to safe drinking water, but they aren’t urged to exercise that right by checking the quality of the water with a pipette every time they have a drink at the tap. Instead, regulatory agencies act on everyone’s behalf to ensure that all our water is safe. The same must be done for digital privacy: it isn’t something the average user is, or should be expected to be, personally competent to protect.

There are two parallel approaches that should be pursued to protect the public.

One is better use of class or group actions, otherwise known as collective redress actions. Historically, these have been limited in Europe, but in November 2020 the European parliament passed a measure that requires all 27 EU member states to implement measures allowing for collective redress actions across the region. Compared with the US, the EU has stronger laws protecting consumer data and promoting competition, so class or group action lawsuits in Europe can be a powerful tool for lawyers and activists to force big tech companies to change their behavior even in cases where the per-person damages would be very low.

Class action lawsuits have most often been used in the US to seek financial damages, but they can also be used to force changes in policy and practice. They can work hand in hand with campaigns to change public opinion, especially in consumer cases (for example, by forcing Big Tobacco to admit to the link between smoking and cancer, or by paving the way for car seatbelt laws). They are powerful tools when there are thousands, if not millions, of similar individual harms, which add up to help prove causation. Part of the problem is getting the right information to sue in the first place. Government efforts, like a lawsuit brought against Facebook in December by the Federal Trade Commission (FTC) and a group of 46 states, are crucial. As the tech journalist Gilad Edelman puts it, “According to the lawsuits, the erosion of user privacy over time is a form of consumer harm—a social network that protects user data less is an inferior product—that tips Facebook from a mere monopoly to an illegal one.” In the US, as the New York Times recently reported, private lawsuits, including class actions, often “lean on evidence unearthed by the government investigations.” In the EU, however, it’s the other way around: private lawsuits can open up the possibility of regulatory action, which is constrained by the gap between EU-wide laws and national regulators.

Which brings us to the second approach: a little-known 2016 French law called the Digital Republic Bill. The Digital Republic Bill is one of the few modern laws focused on automated decision making. The law currently applies only to administrative decisions taken by public-sector algorithmic systems. But it provides a sketch for what future laws could look like. It says that the source code behind such systems must be made available to the public. Anyone can request that code.

Importantly, the law enables advocacy organizations to request information on the functioning of an algorithm and the source code behind it even if they don’t represent a specific individual or claimant who is allegedly harmed. The need to find a “perfect plaintiff” who can prove harm in order to file a suit makes it very difficult to tackle the systemic issues that cause collective data harms. Laure Lucchesi, the director of Etalab, a French government office in charge of overseeing the bill, says that the law’s focus on algorithmic accountability was ahead of its time. Other laws, like the European General Data Protection Regulation (GDPR), focus too heavily on individual consent and privacy. But both the data and the algorithms need to be regulated.

The need to find a “perfect plaintiff” who can prove harm in order to file a suit makes it very difficult to tackle the systemic issues that cause collective data harms. 

Apple promises in one advertisement: “Right now, there is more private information on your phone than in your home. Your locations, your messages, your heart rate after a run. These are private things. And they should belong to you.” Apple is reinforcing this individualist’s fallacy: by failing to mention that your phone stores more than just your personal data, the company obfuscates the fact that the really valuable data comes from your interactions with your service providers and others. The notion that your phone is the digital equivalent of your filing cabinet is a convenient illusion. Companies actually care little about your personal data; that is why they can pretend to lock it in a box. The value lies in the inferences drawn from your interactions, which are also stored on your phone—but that data does not belong to you.

Google’s acquisition of Fitbit is another example. Google promises “not to use Fitbit data for advertising,” but the lucrative predictions Google needs aren’t dependent on individual data. As a group of European economists argued in a recent paper put out by the Centre for Economic Policy Research, a think tank in London, “it is enough for Google to correlate aggregate health outcomes with non-health outcomes for even a subset of Fitbit users that did not opt out from some use of using their data, to then predict health outcomes (and thus ad targeting possibilities) for all non-Fitbit users (billions of them).” The Google-Fitbit deal is essentially a group data deal. It positions Google in a key market for heath data while enabling it to triangulate different data sets and make money from the inferences used by health and insurance markets.

What policymakers must do

Draft bills have sought to fill this gap in the United States. In 2019 Senators Cory Booker and Ron Wyden introduced an Algorithmic Accountability Act, which subsequently stalled in Congress. The act would have required firms to undertake algorithmic impact assessments in certain situations to check for bias or discrimination. But in the US this crucial issue is more likely to be taken up first in laws applying to specific sectors such as health care, where the danger of algorithmic bias has been magnified by the pandemic’s disparate impacts on US population groups.

In late January, the Public Health Emergency Privacy Act was reintroduced to the Senate and House of Representatives by Senators Mark Warner and Richard Blumenthal. This act would ensure that data collected for public health purposes is not used for any other purpose. It would prohibit the use of health data for discriminatory, unrelated, or intrusive purposes, including commercial advertising, e-commerce, or efforts to control access to employment, finance, insurance, housing, or education. This would be a great start. Going further, a law that applies to all algorithmic decision making should, inspired by the French example, focus on hard accountability, strong regulatory oversight of data-driven decision making, and the ability to audit and inspect algorithmic decisions and their impact on society.

Three elements are needed to ensure hard accountability: (1) clear transparency about where and when automated decisions take place and how they affect people and groups, (2) the public’s right to offer meaningful input and call on those in authority to justify their decisions, and (3) the ability to enforce sanctions. Crucially, policymakers will need to decide, as has been recently suggested in the EU, what constitutes a “high risk” algorithm that should meet a higher standard of scrutiny.


Clear Transparency

The focus should be on public scrutiny of automated decision making and the types of transparency that lead to accountability. This includes revealing the existence of algorithms, their purpose, and the training data behind them, as well as their impacts—whether they have led to disparate outcomes, and on which groups if so.

Public participation

The public has a fundamental right to call on those in power to justify their decisions. This “right to demand answers” should not be limited to consultative participation, where people are asked for their input and officials move on. It should include empowered participation, where public input is mandated prior to the rollout of high-risks algorithms in both the public and private sectors.

Sanctions

Finally, the power to sanction is key for these reforms to succeed and for accountability to be achieved. It should be mandatory to establish auditing requirements for data targeting, verification, and curation, to equip auditors with this baseline knowledge, and to empower oversight bodies to enforce sanctions, not only to remedy harm after the fact but to prevent it.


The issue of collective data-driven harms affects everyone. A Public Health Emergency Privacy Act is a first step. Congress should then use the lessons from implementing that act to develop laws that focus specifically on collective data rights. Only through such action can the US avoid situations where inferences drawn from the data companies collect haunt people’s ability to access housing, jobs, credit, and other opportunities for years to come.

Tech

Transforming health care at the edge

Published

on

Transforming health care at the edge


Edge computing, through on-site sensors and devices, as well as last-mile edge equipment that connects to those devices, allows data processing and analysis to happen close to the digital interaction. Rather than using centralized cloud or on-premises infrastructure, these distributed tools at the edge offer the same quality of data processing but without latency issues or massive bandwidth use.

“The real-time feedback loop required for things like remote monitoring of a patient’s heart and respiratory metrics is only possible with something like edge computing,” Mirchandani says. “If all that information took several seconds or a minute to get processed somewhere else, it’s useless.”

Opportunities and challenges at the health-care edge

The sky’s the limit when it comes to the opportunities to use edge computing in health care, says Paul Savill, senior vice president of product management and services at technology company Lumen, especially as health systems work to reduce costs by shifting testing and treatment out of hospitals and into clinics, retail locations, and homes.

“A lot of patient care now happens at retail drugstores, whether it is blood work, scans, or other assessments,” Savill says. “With edge computing capabilities and tools, that can now take place on-site, on a real-time basis, so you don’t have to send things to a lab and wait a day or week to get results back.”

The arrival of 5G technology, the new standard for broadband cellular networks, will also drive opportunities, as it works with edge computing tools to support the internet of things and machine learning, adds Mirchandani. “It’s the combination of this super-low-latency network and computing at the edge that will help these powerful new applications take flight,” he says. Take robotic surgeries—it’s crucial for the surgeon to have nearly instant, sub-millisecond sensory feedback. “That’s not possible in any other way than through technologies such as edge computing and 5G,” he says.

“A lot of patient care now happens at retail drugstores. With edge computing capabilities and tools, that can now take place on-site, on a real-time basis, so you don’t have to send things to a lab and wait a day or week to get results back.”

Paul Savill, Senior Vice President, Product Management and Services, Lumen

Data security, however, is a particular challenge for any health-care-related technology because of HIPAA, the US health information privacy law, and other regulations. The real-time data transmission edge computing provides will be under significant scrutiny, Mirchandani explains, which may affect widespread adoption. “There needs to be an almost 100% guarantee that the information you generate from a heart monitor, pulse oximeter, blood glucose monitor, or any other device will not be intercepted or disrupted in any way,” he says.

Still, edge computing technologies, paired with the right security standards and tools, are often more secure and reliable than the on-premises environment a business could implement on its own, Savill points out. “It’s about understanding the entire threat landscape down to the network level.”

Continue Reading

Tech

Anti-vaxxers are weaponizing Yelp to punish bars that require vaccine proof

Published

on

Anti-vaxxers are weaponizing Yelp to punish bars that require vaccine proof


Smith’s Yelp reviews were shut down after the sudden flurry of activity on its page, which the company labels “unusual activity alerts,” a stopgap measure for both the business and Yelp to filter through a flood of reviews and pick out which are spam and which aren’t. Noorie Malik, Yelp’s vice president of user operations, said Yelp has a “team of moderators” that investigate pages that get an unusual amount of traffic. “After we’ve seen activity dramatically decrease or stop, we will then clean up the page so that only firsthand consumer experiences are reflected,” she said in a statement.

It’s a practice that Yelp has had to deploy more often over the course of the pandemic: According to Yelp’s 2020 Trust & Safety Report, the company saw a 206% increase over 2019 levels in unusual activity alerts. “Since January 2021, we’ve placed more than 15 unusual activity alerts on business pages related to a business’s stance on covid-19 vaccinations,” said Malik.

The majority of those cases have been since May, like the gay bar C.C. Attles in Seattle, which got an alert from Yelp after it made patrons show proof of vaccination at the door. Earlier this month, Moe’s Cantina in Chicago’s River North neighborhood got spammed after it attempted to isolate vaccinated customers from unvaccinated ones.

Spamming a business with one-star reviews is not a new tactic. In fact, perhaps the best-known case is Colorado’s Masterpiece bakery, which won a 2018 Supreme Court battle for refusing to make a wedding cake for a same-sex couple, after which it got pummeled by one-star reviews. “People are still writing fake reviews. People will always write fake reviews,” Liu says.

But he adds that today’s online audience know that platforms use algorithms to detect and flag problematic words, so bad actors can mask their grievances by blaming poor restaurant service like a more typical negative review to ensure the rating stays up — and counts.

That seems to have been the case with Knapp’s bar. His Yelp review included comments like “There was hair in my food” or alleged cockroach sightings. “Really ridiculous, fantastic shit,” Knapp says. “If you looked at previous reviews, you would understand immediately that this doesn’t make sense.” 

Liu also says there is a limit to how much Yelp can improve their spam detection, since natural language — or the way we speak, read, and write — “is very tough for computer systems to detect.” 

But Liu doesn’t think putting a human being in charge of figuring out which reviews are spam or not will solve the problem. “Human beings can’t do it,” he says. “Some people might get it right, some people might get it wrong. I have fake reviews on my webpage and even I can’t tell which are real or not.”

You might notice that I’ve only mentioned Yelp reviews thus far, despite the fact that Google reviews — which appear in the business description box on the right side of the Google search results page under “reviews” — is arguably more influential. That’s because Google’s review operations are, frankly, even more mysterious. 

While businesses I spoke to said Yelp worked with them on identifying spam reviews, none of them had any luck with contacting Google’s team. “You would think Google would say, ‘Something is fucked up here,’” Knapp says. “These are IP addresses from overseas. It really undermines the review platform when things like this are allowed to happen.”

Continue Reading

Tech

These creepy fake humans herald a new age in AI

Published

on


Once viewed as less desirable than real data, synthetic data is now seen by some as a panacea. Real data is messy and riddled with bias. New data privacy regulations make it hard to collect. By contrast, synthetic data is pristine and can be used to build more diverse data sets. You can produce perfectly labeled faces, say, of different ages, shapes, and ethnicities to build a face-detection system that works across populations.

But synthetic data has its limitations. If it fails to reflect reality, it could end up producing even worse AI than messy, biased real-world data—or it could simply inherit the same problems. “What I don’t want to do is give the thumbs up to this paradigm and say, ‘Oh, this will solve so many problems,’” says Cathy O’Neil, a data scientist and founder of the algorithmic auditing firm ORCAA. “Because it will also ignore a lot of things.”

Realistic, not real

Deep learning has always been about data. But in the last few years, the AI community has learned that good data is more important than big data. Even small amounts of the right, cleanly labeled data can do more to improve an AI system’s performance than 10 times the amount of uncurated data, or even a more advanced algorithm.

That changes the way companies should approach developing their AI models, says Datagen’s CEO and cofounder, Ofir Chakon. Today, they start by acquiring as much data as possible and then tweak and tune their algorithms for better performance. Instead, they should be doing the opposite: use the same algorithm while improving on the composition of their data.

Datagen also generates fake furniture and indoor environments to put its fake humans in context.

DATAGEN

But collecting real-world data to perform this kind of iterative experimentation is too costly and time intensive. This is where Datagen comes in. With a synthetic data generator, teams can create and test dozens of new data sets a day to identify which one maximizes a model’s performance.

To ensure the realism of its data, Datagen gives its vendors detailed instructions on how many individuals to scan in each age bracket, BMI range, and ethnicity, as well as a set list of actions for them to perform, like walking around a room or drinking a soda. The vendors send back both high-fidelity static images and motion-capture data of those actions. Datagen’s algorithms then expand this data into hundreds of thousands of combinations. The synthesized data is sometimes then checked again. Fake faces are plotted against real faces, for example, to see if they seem realistic.

Datagen is now generating facial expressions to monitor driver alertness in smart cars, body motions to track customers in cashier-free stores, and irises and hand motions to improve the eye- and hand-tracking capabilities of VR headsets. The company says its data has already been used to develop computer-vision systems serving tens of millions of users.

It’s not just synthetic humans that are being mass-manufactured. Click-Ins is a startup that uses synthetic AI to perform automated vehicle inspections. Using design software, it re-creates all car makes and models that its AI needs to recognize and then renders them with different colors, damages, and deformations under different lighting conditions, against different backgrounds. This lets the company update its AI when automakers put out new models, and helps it avoid data privacy violations in countries where license plates are considered private information and thus cannot be present in photos used to train AI.

Click-Ins renders cars of different makes and models against various backgrounds.

CLICK-INS

Mostly.ai works with financial, telecommunications, and insurance companies to provide spreadsheets of fake client data that let companies share their customer database with outside vendors in a legally compliant way. Anonymization can reduce a data set’s richness yet still fail to adequately protect people’s privacy. But synthetic data can be used to generate detailed fake data sets that share the same statistical properties as a company’s real data. It can also be used to simulate data that the company doesn’t yet have, including a more diverse client population or scenarios like fraudulent activity.

Proponents of synthetic data say that it can help evaluate AI as well. In a recent paper published at an AI conference, Suchi Saria, an associate professor of machine learning and health care at Johns Hopkins University, and her coauthors demonstrated how data-generation techniques could be used to extrapolate different patient populations from a single set of data. This could be useful if, for example, a company only had data from New York City’s more youthful population but wanted to understand how its AI performs on an aging population with higher prevalence of diabetes. She’s now starting her own company, Bayesian Health, which will use this technique to help test medical AI systems.

The limits of faking it

But is synthetic data overhyped?

When it comes to privacy, “just because the data is ‘synthetic’ and does not directly correspond to real user data does not mean that it does not encode sensitive information about real people,” says Aaron Roth, a professor of computer and information science at the University of Pennsylvania. Some data generation techniques have been shown to closely reproduce images or text found in the training data, for example, while others are vulnerable to attacks that make them fully regurgitate that data.

This might be fine for a firm like Datagen, whose synthetic data isn’t meant to conceal the identity of the individuals who consented to be scanned. But it would be bad news for companies that offer their solution as a way to protect sensitive financial or patient information.

Continue Reading

Copyright © 2020 Diliput News.